




瑞宇空分专注于研发、制造、安装各类成套空分设备并提供气体投资、EPC工程总包、设备运营管理、生物能源的综合服务,瑞宇空分具有年设计生产大、中型空分设备30套以上的能力,迄今已成功服务全球客户1000余家。根据市场需求和自身优势走出另一新模式—气体投资。新模式的选择,在于瑞宇空分始终坚持客户和市场导向,通过认真的市场调研和市场分析,瑞宇空分准确把握行业发展趋势,有效配置内外部资源,瑞宇空分根据自身优势和现实条件为用户提供差异化服务,让专业的公司做专业的事,瑞宇空分充分发挥各自特长,取得效益。
为客户创造价值,让智能时代定义未来
瑞宇空分积极推进“工业4.0”,基于新一代信息通信技术与先进制造技术深度融合,依靠自动化生产技术构建企业智能化升级,帮助客户实现快速成长。

瑞宇空分的服务支持
量身定制,依据您的根本需求,从工艺、产品及预算等,提供高效灵活一体化的解决方案。量身定制,精心设计的考察行程帮助您更好地了解空分设备制造、制造及智能管理系统等,满足您的需求。管家式服务,从售前的商务支持、售中的项目服务到售后服务,始终以客户需求为导向,开创全新价值链服务。

制氧机厂家为你介绍,制氧设备全氧燃烧定义!
一、全氧燃烧的定义 在玻璃熔窑的大规模生产中,空气一直被用作助燃介质。通过对现有燃烧系统的分析和研究,认为空气燃烧是导致高能耗、高污染和高成本的重要因素。空气中含有21%的氧气、78%的氮气、0.93%的氩气和其他含量很少的成分。因此,只有21%的氧气参与燃烧,78%的氮气不仅不参与燃烧,而且将大量热量带入大气,导致大量热量浪费。经过长期反复试验研究,认为纯度≥85%的氧气作为助燃介质,在节能和改善环境方面效果显著。因此,纯度≥85%的氧参与燃烧的系统称为全氧燃烧。 二、全氧燃烧和空气燃烧之间的差异 空气燃烧反应: CH4+2O2+8N2→CO2+2H2O+8N2 总氧燃烧反应: CH4+202→CO2+2H2O 与空气燃烧相比,由于氮的大量减少,玻璃液上方燃烧产物中的总氧燃烧主要是水和二氧化碳,燃烧后的烟气体积比空气燃烧烟气减少了70-80%,从而大大简化了熔炉的结构。当空气或总氧用作助燃介质时,传热过程也大不相同。空气+燃料的特点是辐射气体(H2O、CO2)浓度低,热辐射系数低,气体停留时间短,热烟道位置有限,传热好。关键在于良好的覆盖大量明亮的火焰和玻璃熔体表面,需要改变火焰、间歇燃烧和空气储存。然而,氧气+燃料辐射气体浓度高,气体辐射系数高,气体停留时间长,平均窑容积约30s,燃烧器可以放置在任何需要热量的位置,无论燃烧器类型如何,都可以实现良好的整体传热,局部热源仍然取决于燃烧器类型和配置,不需要改变火焰,连续燃烧和稳定燃烧。传统的空气燃烧要求烟气和助燃空气通过定期的火焰交换进行热交换,以回收部分热能。然而,在火焰交换过程中窑内火焰的瞬间损失将不可避免地导致玻璃液中热源的损失,从而导致窑内温度的波动。在换火过程的影响下,窑内压力波动也是不可避免的结果。

工业制氧机维修保养:工业制氧机的工作原理及工艺流程
1、工作原理 工业制氧机维修保养:制氧机分离空气主要由两个填满分子筛的吸附塔组成,在常温条件下,将压缩空气经过过滤,除水干燥等净化处理后进入吸附塔,在吸附塔中空气中的氮气等被分子筛所吸附,而使氧气在气相中得到富集,从出口流出贮存在氧气缓冲罐中,而在另一塔已完成吸附的分子筛被迅速降压,解析出已吸附的成分,两塔交替循环,即可得到纯度为≥90%的廉价的氧气。 2、工业制氧机维修保养:应用领域 制氧机因为其显著的优点而被广大用户所青睐,广泛地应用于冶金助燃,化工、环保、建材、轻工、医疗、水产养殖、生物技术、污水处理等领域。 3、工艺流程 空气经空压机压缩后,经过除尘、除油、干燥后,进入空气储罐,经过空气进气阀、左进气阀进入左吸附塔,塔压力升高,压缩空气中的氮分子被沸石分子筛吸附,未吸附的氧气穿过吸附床,经过左产气阀、氧气产气阀进入氧气储罐,这个过程称之为左吸,持续时间为几十秒。左吸过程结束后,左吸附塔与右吸附塔通过均压阀连通,使两塔压力达到均衡,这个过程称之为均压,持续时间为3~5秒。 均压结束后,压缩空气经过空气进气阀、右进气阀进入右吸附塔,压缩空气中的氮分子被沸石分子筛吸附,富集的氧气经过右产气阀、氧气产气阀进入氧气储罐,这个过程称之为右吸,持续时间为几十秒。工业制氧机同时左吸附塔中沸石分子筛吸附的氧气通过左排气阀降压释放回大气当中,此过程称之为解吸。反之左塔吸附时右塔同时也在解吸。 工业制氧机维修保养:为使分子筛中降压释放出的氮气完全排放到大气中,氧气通过一个常开的反吹阀吹扫正在解吸的吸附塔,把塔内的氮气吹出吸附塔。这个过程称之为反吹,它与解吸是同时进行的。右吸结束后,进入均压过程,再切换到左吸过程,一直循进行下去,从而连续产出高纯度的产品氧气。

